
Patterns of Innovation: A Web-based
MATLAB Programming Contest

Ned Gulley
The MathWorks, Inc.

3 Apple Hill Drive
Natick, MA 01760 USA

+1 508 647 7331
gulley@mathworks.com

ABSTRACT
In this paper, we describe an innovative web-based
MATLAB programming contest and point out some
interesting connections between the contest and open
source software development.

Keywords
MATLAB, programming contest, open source, evolutionary
coding, collaborative development

INTRODUCTION
MATLAB, developed by The MathWorks, Inc., is a matrix-
based language optimized for fast numeric computation.
Because of its matrix-based approach, it is possible, using
MATLAB, to write compact code that is nevertheless very
expressive. MATLAB lends itself to rapid prototyping of
algorithms, and longtime practitioners of the language
develop tricks and techniques that trade off speed of
implementation, speed of execution, elegance, and
compactness. A contest is an entertaining way to encourage
these programmers to both show off and share their skills.
Over the years, we have run several e-mail based MATLAB
programming contests, in which a challenge was issued and
anyone was welcome to send in an entry by e-mail to be
tested against all other entries. These competitions were
popular, but they were slow and tedious to score, resulting
in a turnaround time on the order of a month or more.
Looking to speed things up, we created a web-based
MATLAB programming contest in which contestants
submit code that is scored and ranked in real time [1]. Our
primary goal was to provide an entertaining diversion to the
community of MATLAB users while encouraging the
exchange of good programming practices. The results have
been satisfying: the on-line programming contests have
been crowd-pleasing successes.
We have by now run three open contests as well as several
internal to The MathWorks. Each lasts one or two weeks.
Here are some important features of the contest.

• entries are automatically and immediately scored,
ranked, and displayed

• the code, author, and score for all entries are visible to
all contestants at all times

• anyone can modify an existing entry and resubmit it as
their own (though the pedigree is tracked)

These contests generated a great deal of activity. Some
contestants chose to submit one or two entries, but others
entered literally dozens of algorithms, improving them
steadily over a period of days. Interestingly, the leading
entries represented the combined efforts of numerous
contestants.
During the course of several competitions, we have
gathered images and stories about how people who have
never met are motivated to collaborate in writing highly
optimized code. We had fortuitously developed a nicely
instrumented open-source laboratory for observing the
innovation at work.

HOW THE CONTEST WORKS
From a contestant's point of view the contest consists of
three primary web pages: the current standings, a page for
viewing the code behind any of the entries, and a page for
submitting a new entry, whether based on a previous entry
or not. As they are submitted, entries are time-stamped and
scored. Every entry has a name, an author, a time stamp, a
CPU runtime, a metric of the algorithm's performance, and
an overall score. Any entrant can find out within a few
minutes if he has jumped to the top of the standings.
In order to rank the entries, we need to score them. There
are two quantitative results for each entry: the performance
metric or "goodness" of the result, and the speed with which
it was computed. For each contest, we combined these two
to make a single final overall score. The algorithm that
calculates the final score must be tailored to each contest. If
we don't penalize CPU time at all, the entries may take too
long and time out, and the urge to streamline the code for
speed will be minimal. On the other hand, if we penalize
CPU time too much, speedy but boring algorithms result.

Contest examples
Here are the contests we have run.

• Calculating a Fibonacci number [internal contest] Find
the nth Fibonacci number as quickly as possible.

• Bin packing [1455 total entries] Given a large possible
play list, put songs on a CD that will as nearly as
possible fill up (but not exceed) the capacity of the CD.

• Optimal mapping [1647 total entries] Given a map of
part of the surface of Mars and several robotic rovers,
plan a route for the rovers that surveys the most area.

Visualizing the results
We used two plots to interpret the contest results. The first
is a scatter plot with the submission time forming the x-axis
and the score forming the y-axis. These results are from the
Mars rover contest; every point is a different entry.

The line running along the bottom represents the current
best score at any point. Since the leading entry is always the
one with the lowest score, the line decreases monotonically
toward the eventual winner on the far right.

This second plot shows performance metric on the y axis
and CPU time on the x axis (in both cases lower is better).
The line again traces through the leaders throughout the
contest, moving from a high score in the upper center of the
plot to the final lowest (winning) score in the lower left.

Interpreting the results: the zigzag of innovation
These diagrams let us visualize the evolution of the
algorithms as the contest progresses. The contestants tried a

diverse set of approaches in each contest. For example,
generating Fibonacci numbers is not difficult, but we were
surprised to discover eleven distinct strategies for
performing the calculation. Broadly speaking, new entries
were either incremental improvements (tweaks) or dramatic
changes to the algorithm (leaps). In the second plot above,
the line zigzags between these leaps and tweaks. Horizontal
motion from right to left indicates speed improvements that
do not improve the basic algorithmic performance. These
are the tweaks. Big vertical drops indicate fundamental
improvements in the algorithm.
Throughout the contest, the code in the lead position is
constantly being modified by competitors in search of weak
points in the code. If you can make the code even the tiniest
bit faster, you become the leader. Tweaking the leader is
tempting, because you don't necessarily have to understand
the algorithm involved; you need only know that you are
replacing a slower line with a faster line that does the same
thing. Tweaking may sound cheap or predatory, but even
the most mindless tweaking can accelerate code over a
surprisingly short period of time as the slack is pulled out of
an algorithm. It has an appealingly egalitarian effect: no
optimization is too small to be worthy of consideration.
Breakthroughs, or leaps in performance, are much rarer and
describe a trajectory distinct from speed tuning. A leading
strategy tends to be tweaked over and over, but not
drastically modified for some time before a significantly
different approach displaces it. The interplay between these
two approaches leads to the zigzag pattern shown above.

CONCLUSIONS
The programming contest achieved a remarkable result: it
turned MATLAB coding into an entertaining spectator
sport. Feedback from participants was enthusiastic, and the
contest led to many discussions about the relative merits of
various coding techniques. We believe the contest was
successful because it was
• competitive (contestants are motivated)
• real-time (contestants remain engaged)
• personal (names are visible, discussion is encouraged)
• open-source (all code is visible at all times)
Crucial to the appeal is the fact that you can quickly modify
and resubmit someone else's entry. The winning entry in
each contest represented the efforts of many people. Indeed,
it's fair to say that no single person could have written such
an optimized algorithm. This push-pull of collaboration and
competition is strangely compelling, and it echoes the
popularity of open source programming, in that motivated
people from all over the world contributed to create the best
possible code. It's an exciting way to develop algorithms,
and a fun way to watch the process of innovation unfold.

REFERENCES
1. MATLAB On-line Programming Contest home page:

http://www.mathworks.com/contest/.

