The amount of useful stuff we squeeze out of petroleum is shockingly long. In addition to merely propelling us in various motor vehicles, it takes the form of plastics, lubricants, solvents, waxes, asphalt, synthetic rubber and fibers, flavorings and fragrances, cosmetics, medicine precursors, and on and on. On the plus side, we can be congratulated for eating every last knuckle and sinew of that oleaginous beast. More dispiriting is fact is that, as we consider the already frightening task of getting our fuel from somewhere else, we’ll need to get all those other things from somewhere else too. Where, for example, are we going to get all the plastic we need to hold this place together?
With that in mind, here’s a mildly cheering tale from Rob Carlson’s synthesis blog: Micro-Brewing the Bioeconomy: Beer as an Example of Distributed Biological Manufacturing. His premise is that small-batch biosynthesis of things like plastic precursors is already economically viable. This will supply carbon neutral versions of some of the chemicals we crave, but more importantly it will help us grow the expertise and infrastructure we’ll need farther down the road. To make his point, he considers the beer industry. If it was all about scale, he observes, then we’d all be drinking Budweiser, full stop. But there’s plenty of room for craft brewers. By analogy, there’ll be plenty of room for micro-brewery style biosynthesis startups. Carlson’s best line:
Any technology that is based on cow digestion doesn’t have to be any bigger than a cow.
Microbreweries won’t replace Exxon, not by a long shot. But they’re a critical step in the right direction. I was skeptical too, but Carlson pointed out that companies like Blue Marble Energy are already making money with this approach. Their game is turning algal slime into plastics. Watch the video on their home page.
Heard at the brew-pub of the future: Hey barkeep, how about an amide hefeweizen for the lady, and put another head on this carbon-neutral anhydrous ammonia double bock.